Error-probability noise benefits in threshold neural signal detection
نویسندگان
چکیده
Five new theorems and a stochastic learning algorithm show that noise can benefit threshold neural signal detection by reducing the probability of detection error. The first theorem gives a necessary and sufficient condition for such a noise benefit when a threshold neuron performs discrete binary signal detection in the presence of additive scale-family noise. The theorem allows the user to find the optimal noise probability density for several closed-form noise types that include generalized Gaussian noise. The second theorem gives a noise-benefit condition for more general threshold signal detection when the signals have continuous probability densities. The third and fourth theorems reduce this noise benefit to a weighted-derivative comparison of signal probability densities at the detection threshold when the signal densities are continuously differentiable and when the noise is symmetric and comes from a scale family. The fifth theorem shows how collective noise benefits can occur in a parallel array of threshold neurons even when an individual threshold neuron does not itself produce a noise benefit. The stochastic gradient-ascent learning algorithm can find the optimal noise value for noise probability densities that do not have a closed form.
منابع مشابه
Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks
Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملSignal detection Using Rational Function Curve Fitting
In this manuscript, we proposed a new scheme in communication signal detection which is respect to the curve shape of received signal and based on the extraction of curve fitting (CF) features. This feature extraction technique is proposed for signal data classification in receiver. The proposed scheme is based on curve fitting and approximation of rational fraction coefficients. For each symbo...
متن کاملSecrecy of Communications in Data Transmission by Impulses with Unknown Moments of Appearance and Disappearance
We carried out a comparative analysis of the algorithms for detecting a rectangular impulse against Gaussian white noise under either authorized or unauthorized access to the transmitted data. We presupposed that for data transmission the binary communication system is used and that the useful information in the data is whether the signal is present or absent. The case is that unauthorized acce...
متن کاملNoise-Improved Signal Detection in Nonlinear Threshold Systems
We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 22 5-6 شماره
صفحات -
تاریخ انتشار 2009